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TECHNICAL NOTE 2917

A MODIFIED REYNOLDS ANATOGY FCR THE COMPRESSIRLE
TURBULENT BOUNDARY LAYER ON A FLAT PLATE

By Morris W. Rubesin
SUMMARY

A modified Reynolds analogy is developed for the compressible
turbulent boundary layer on a flat plate. When mixing-length theories
are used to evaluate terms of the final expressions, it is found for
air that the ratio of Stanton number to half the local skin-friction
coefficient is greater than unity. At Mach number equals zero, this
ratio is of the order of 1.18 to 1.21 for Reynolds numbers based on
momentum thickness of 102 to 10°. Up to & Mach number of 5 and under
extreme conditions of surface temperature, it is found thet the ratio
of Stanton number to half the skin-friction coefficient differs from its
values for the incompressible case (M=0) by amounts so small as to be of
the magnitude of the uncertainties in the theory.

INTRODUCTION

There are several theories in the literature of aerodynamics which
are concerned with the subjects of skin friction and heat transfer in
the compressible turbulent boundary layer on a flat plate (refs. 1
through 8). Each of these theories, however, is restricted through the
assumptions that Prandtl number (Pr) is unity in the leminar sublayer
and that there is an equivalence in the mechanisms of the transport of
heat and momentum in the turbulent region of the boundary layer.l The
latter can be considered equal to the assumption that the turbulent
Prandtl number (o) is unity. From these assumptions and from a definition
of the heat-transfer coefficient based on the temperature difference
between that of the surface and the stagnation temperature of the free
stream, 1t is found that there is an exact equivalence between the local
heat-transfer coefficient (written in dimensionless fashion as the
1The recent mixing-length theory of Lin and Shen (refs. 6, 7, and 8)

consliders the differences in the turbulent exchange mechanisms of
momentum and energy. The theory, however, is incamplete in that it
requires empirical knowledge of three coefficients which have not yet
been determined.
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Stanton number) and the local skin-friction coefficient. This corre-
sponds to the well-known Reynolds amalogy of the low-speed case.

From investigations of heat transfer at subsonic speeds, it is
known, for the case of air, that the Reynolds analogy underestimates the
value of the Stenton mumber by approximately 20 percent. The results
from these investigations, including the empirical work of Colburn
(ref. 9), and the results of this analysis are shown in table I
(refs. 10 through 14). The analyses in the table are classified
according to (1) which of the usual three boundary-layer subdivisions
are used, (2) what assumptions are employed in each, (3) what value
of turbulent Prandtl number is employed, and (4) whether frictional
dissipation is included. In generasl, the following is observed:
Including the buffer layer introduces to the final expressions an
additional term which depends on the assumed velocity distribution in
that region; Including dissipation leads to the evaluation of a temper-
ature recovery factor; and allowing for variation of the turbulent
Prandtl number o zresulits in terms of Pr/a where Pr appeared for
the cases vhere a = l. It should be emphasized that only Shirokow,
Smith and Herrop, and the present analysis consider the effect of
compressibility. The other analyses neglect compressibility and employ
low-speed values for the velocity ratios at the outer edges of the
leminar sublayer and buffer layer, respectively, and use empirically
determined incompressible velocity distributions in evaluating the
effect of the buffer layer. The latter procedure introduces the constants
vhich esppear in the end expressions developed by von Kérmfn and Seban.
It should be noted that Shirokow also restricts his end results to the
incompressible case by employing a low-speed value for the velocity
ratio at the outer edge of the sublayer.

The question arises as to how the relative thickening of the sub-
layer and buffer layer under the conditions of compressibility will
influence the results of these analyses. Will compressibility cause
the large corrections to the Reynolds analogy to increase or decrease?
Smith and Herrop (ref. 14) have examined this problem from the compressi-
bility viewpoint. The identical assumptions used by von Karmin were
employed except that all temperatures were replaced by total temperatures
to account for frictional dissipation. This procedure is Justified
whenever the laminar or turbulent Prandtl number is unity; as Smith and
Herrop assumed for the turbulent portion of the boundary layer. Since
the analysis considered the laminar Prandtl number other than unity in
the sublayer and buffer layer, some error wes introduced. The main
effect of this error was that the recovery temperature of the surface
remained at the stagnation temperature whatever the value of Pr. In
general, when it was assumed that the surface temperature largely
governs the extent of the sublayer and buffer layer, it was found that
compressibility has a very small effect on the relationship between heat
transfer and skin friction.
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In view of the failure of the Smith and Harrop theory to show any
variation of temperature recovery factor with Prandtl number and of the
omission of the effect of the turbulent Prandtl number, it is believed
desirable to re-examine the problem considering the effects imposed by
compressibility. It is the purpose of this report, therefore, to study
the relationship between heat transfer and skin friction in the com-
pressible turbulent boundary layer on a flat plate with emphasis on
the following:

1., The effect of the relative thickening of the sublayer
of the boundary layer

2. The effect of frictional dissipation

3. The effect of differences id the turbulent exchange
mechanism of momentum and heat (turbulent Prandtl
numbers other than unity)

Because of the present lack of understanding of the mechanism of
turbulence in shear flow and of the structure of compressible turbulent
boundary leyers, this theory, like all the other theories of the
turbulent boundary layer, depends largely on arbitrary, but plausible,
essumptions. It cannot, therefore, be consideréd as absolute.

SYMBOLS

¢y local skin-friction coefficient, u
(1/2)p,u 2

Cp specific heat at constent pressure

E total emergy, cpl + u2/2

h local heat~transfer coefficlent, rate of heat transfer
per unit area per degree, q/(Ty~Tgy)

H thermal energy flux (defined by eq. (8))

k thermal conductivity

M Mach number

P pressure

Pr  Prandtl number composed of properties based on molecular

transport, ncp[k
q rate of heat transfer per unit area

Rg Reynolds number based on momentum thickness
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local recovery factor, Taw,—Tm/TS-TJ°°

Stenton number, h/pu cp,,
temperature

velocity in the x direction
velocity in the y direction

coordinate system with y = O plane as surface of the
plate

Prandtl number composed of properties based on turbulent
transport, €cp/k

ratio of specific heats (1.4t for air)

eddy viscosity (defined by eq. (9))

momentum thickness

eddy thermal conductivity (defined by eq. (10))
viscosity

density

shear stress (defined by eq. (7))

Superscripts

mean value

fluctuating value
Subscripts

condition at outer edge of sublayer
éondition at outer edge of buffer layer
stagnation conditions

condition at outer edge of boundary layer
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W condition of surface
aw condition at surface for zero heat transfer

System of units used is arbitrary but must be selfconsistent.
ANALYSIS

The basic compressible turbulent boundary-layer equations are
given in reference 5 and can be written for steady flow past a flat
plate as

2 (®) + & ) =& @8- E T - 5T (1)
2 (5aE) + < (57) - 2 GE -5 5% - 557+ <§1; )26 on
(2)
S
3 () + 57 (b7 + p7¥7) = 0 (3)

At present, equations (1) to (3) cannot be solved rigorously. They
can only be used as guides toward choosing the important variables and
for indicating the form of simplified, though arbitrary, relationships
between these variables.

For choosing the variables to be considered, equations (1) to (3)
are revwritten using the relation

E = cpT + %'uz (%)
as
e Faov) E-D 85T (5)

o1 & (epf + 25 + (57 + 57v) & (epf + B -

(k %—— + up o _ p cpVIT' - Gp u'v') (6)

dy

k=
Sy
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In equations (5) and (6), the fluctuating density terms have been
placed on the left side of the equations. By virtue of the continuity
equation (3), it is plausible to consider the fluctuating density terms
ag virtusl masses which contribute to those terms which represent the
change of momentum or of total energy of a unit volume of fluid at a
polnt. As a result of this, the fluctuating density terms do not
appear in the terms which are considered to represent the transport of
momentum and of thermal energy on the right of the equations.

The terms within the operators on the right side of equations (5)
and (6), called the shear stress and energy flux, are defined as

T:rlgu;-aW:(He)% (7)
H=E§yi-5cp vIiT! +ﬁ;‘1%§-ﬁ5 u'v? (8)

=(k+5)§+u(p+€)%

where the eddy viscosity € is defined as

T 2

€ =

and the eddy thermal conductivity &k is defined as

k- _ P Cp VT

gl 7 (10)
The bars have been dropped in the final terms of equations (7) and (8)
because all the terms represent mean values.

Although equations (5) and (6) cannot be solved rigorously, they
do yield sufficient information to act as a guide in treating the
problem approximately. For the case where Pr =1 and a =1, it can
be shown that the dependent variables in equations (5) and (6) are
linearly related to each other, that is,

epT + %X = M + B

where A and B are constants. This:'isg equivalent to expressing H/T
equal to a constant through the boundary layer. For the case where
both Pr and a differ from but are close to unity, it is plausible to
agsume, as a first approximation, that H/y still remains constant
through the boundary layer, though the constant may be dependent
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on Pr and a., It should be noted that this assumption, that H/T = con-
stant, is the basis for the present theory.

The ratio of the terms of equation (8) to those of equation (7)
is
E. k+® o1 | (11)
T L+ e OSu

X

The relation between tempersture and velocity in the boundary layer 1s
obtained on integration of equation (11)

{3
T-Tw=fikf—§-§(%-u)du (12)
(o)

At the surface of the plate, the molecular transport terms pre-
dominate and equations (7) and (8) become

H= <% %ggli= - Qw
Therefore,
I--F (13)
Equation (12) becomes
TW—T=/;u 'ﬁ-i—%(%‘fr+ u) du (14)

Equation (14) can be rewritten as
u
u+e€
dy Ty -‘/2 T

- T
Ty u
o k+¢x

(15)

For the case of zero convective heat transfer at the surface, the
numerator of equation (15) must be zero, requiring the surface temper-
ature to be given by

T

0

U
TW=T3W=TQ(1+—]-'—f —-}%—i'—f——udu) (16)
o + K
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or

_ 7 -1 » 1 uL+e u .2
Tow = Teo l:l + > Mg £ P“’—k_-_l-kt— d(-l-l-;) (17)

The quantity Tgyw 18 called the recovery temperature. When the
heat-transfer coefficient is defined as
Qv
h=g——o (18)

the ratio of Stanton number to skin-friction coefficient becomes

h
St PdlaPe _ = (29)
= 2 [
2 2 o k+k

From equation (16) and the definition of recovery factor

Taw - T
r=0 2 (20)
Tg - T,

the expression for recovery factor is

cpm(ll +e

Tk TEew &

(21)

Equations (19) and (21) constitute the general expressions for the
ratio Stﬂhf/2) and the recovery factor r. Integration of these
equations isg facilitated by the assumption that the boundary layer can
be divided into three parts: the sublayer, where only the molecular
transport terms appear (integrand = Pr); the turbulent portion, where
only the eddy transport terms appear (integrand = a); and the buffer
layer, where both kinds of transport occur, the integrand depending

on the proportion of each type of transport mechanism. To establish
the proportion of turbulent to molecular exchange in the buffer layer,
von Khrman Reichardt, and Seban used velocity distributions to estab-
lish ¢ and then computed & by making an assumption of the value

of a. (See teble I.) Smith and Harrop carried this over to the com-
pressible case by assuming that the velocity distribution in the buffer
layer was identical to that used by von Kermsn when the fluid properties
are evaluated at the wall temperature and when the velocity term is
arbitrarily replaced by a function of velocity obtained from their
expressions for the fully turbulent-flow region. Because of the
uncertainty of the latter procedure, the equally uncertain but simpler
approach of entirely neglecting the buffer region and somewhat thicken-
ing the sublayer will be used in this analysis. It can be deduced from
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table I by comparing the Prandtl-Taylor theory with von Karmsn's theory,
for the case of 0.5< Pr < 2, that a very small error is introduced by
omitting the buffer region and replacing it by a thicker sublayer.

When the integrand in equations (19) and (21) is set equal to Pr
in the sublayer, and a in the turbulent portion, the equations become

St 1

4 22
¢ af1- (-5 )

and
r=afl - (1 - %r_)(%)z] (23)

It is observed from table I that for o = 1, equation (22) is
identical with those derived by Taylor, Prandtl, and Shirokow. For
a = 1, the recovery-factor expression is identical with Shirokow's.

When a is eliminated between equations (22) and (23) there
results

u.
14 S
St _ Yo (24)
cp r+ Pr &
5 U
DISCUSSION

The results of this analysis have been shown to depend on a knowl-
edge of the value of the velocity ratio at the outer edge of the sub-
layer and of the value of the turbulent Prandtl number . Neither of
these quantities can be expressed with certainty; however, it will be
shown that sufficient information is available to allow numerical
evaluation of the ratio of Stanton number to the loecsl skin-friction
coefficient.

There are alternative procedures for the evaluation of wu;/u .
The nost widely used method is to assume that low-speed expressions
prevall under the conditions of compressibility with the exception that
the fluid properties are evaluated at the surface temperature. Accord-
ingly, Frankl and Voishel (ref. 1) express this as
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The use of this relationship in Frankl and Voishel's theory for
skin friction (also implied in Van Driest's theory) is known to yield
skin-friction coefficients which agree well with availasble experimental
data at Mach numbers up to 2.5 (ref. 15). Equation (25) will be used
in the numerical evaluations which follow; however, effects of the
uncertainties introduced will be noted.

In order to use equation {(25), it is necessary to be able to
evaluate the local skin-friction coefficient cf. At present there are
insufficient experimental date to establish cfy under general conditions
of surface temperature and Mach nmumber. It is necessary to rely on
theory. TFor this analysis the results of the appendix, in which the
well-known Ven Driest anslysis is repested for Pr #1 and o # 1, are
used in evalustion of cf.

Present knowledge of the turbulent Prandt. numoer o is also quite
limited. The term «a, unlike ©Pr, is believed to depend on the type of
Tlow as well as on the fluld because differences have been found in low-
speed tests of Jets and of pipes or channels. In air Jets it has been
found (ref. 16) that o« varies fram 0.70 to 0.77. These values of a«
are over-all values determined from the spreading of the Jets. In a
pipe it has been found (ref. 17) that the local o« varies from 0.82
to 1.06, depending on the radial position and on the Reynolds number.
Experiments in rectangular channels (ref. 18) also indicate a variation
of local a ranging from 0.60 to 0.95 due to position and Reynolds
number. There are no data available, however, for the magnitude of «
in boundary layers on a flat plate.

In view of the.arbitrary character of the assumption concerning the
veloclty ratio at the outer edge of the sublayer and of the uncertainty
of the value of ¢, can the results of this theory yield information
of any accuracy? It is believed that equation (24) allows a fairly
accurate estimation of the ratio St/(CfﬁE). The reasoning which leads
to this conclusion is based on the considerations of the following

paragraph-

When & constant value of a, having the same order of magnitude
as is measured subsonically in pipes, and the value of ul/uuo based on
equation (25) are introduced into equation (23), it is found that the
recovery factor is lowered.from its incompressible value by as much as
10 percent at a Mach number of 4. This is contrary to experimental
experience where the recovery factor r remains essentially constant
with Mach number in the range 0 < M < 3.8 (refs. 19, 20, 21, and 22).
To conform with experiment, @ or w /u, or both would have to be altered
as a function of Mach number to malintain the recovery factor constant.
To ayoid this speculation, the direct influence of « 18 elimlnated
through the use of equation (24) where the experimentally verified
expression r = Prl/3 1is used. The primary source of error in
equation (24), then, is the uncertainties in the value of u;/ug.
Because of the nature of equation (24) when Pr is near 0.7, its
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spproximate value for gases, uncertainties in ul/u,, are not too
serious. On the average, In the range O0< M < 5 a 20-percent error
in u;/ug, Tepresents a l-percent error in the ratio St/(cp/2).

Values of St/(cf/2) determined from equation (24) are shown in
figures 1 and 2 for Pr = 0.72. The two limiting surface temperatures
likely to be encountered are shown, respectively, in the two figures.
These are the recovery temperature and the free-stream temperature. For
the case of M = 0 both surrace temperatures are equal, and the results
of figures 1 and 2 indicate that the ratio of the Stanton number to
half the local skin-friction coefficient is from asbout 17.5 percent
to 20.5 percent higher than the Reynolds analogy. Colburn's (ref. 9)
empirical correction to Reynolds analogy is Pr-2/8 and corresponds to
a 25-percent correction. The empirical correction, however, is based
on data below a length Reynolds number of one million where the correc-
tion of this theory would be about 21 percent. This correspondence of
theory and experiment is well within the scatter of the experimental
data. For the case of a surface at very near the recovery temperature,
it is noted fram figure 1 that the influence of Mach number is small,
increasing the ratio of the Stanton number to half thé local skin-
friction coefficlent at M =5 by only about 3 percent over the incom-
pressible case. For the cooled case the effect of Mach number is again
small, lowering the ratio St/(cf/2) by about 1 percent at M = 5.
These variations can be considered to be the same order of magnitude as
the uncertainties in the theory for Prandtl number near unity.

A camparison of the results of the present theory with the results
of Smith and Harrop for Rg = 10® is also shown in figure 1. It is
obgerved thet the Smith and Harrop theory yields results which are
markedly lower than the results of the present theory. By varying the
reference velocity for the buffer layer (up in table I) between its
limits, it was found that the Smith and Harrop values varied by less than
3 percent. The main difference in the results of the two theories,
therefore, is due to the considerstion of recovery factor in the present
theory. A similar ¢omparison to that shown in figure 1 cannot be made
in figure 2. For the condition Ty = Ty, it is found that the seriles
in the denominator in Smith and Harrop's end equation (table I) does
not converge rapidly enough to give a vdlid answer at Mach numbers of
the order of unity or higher.

CONCLUDING REMARKS

From & simple analysis of the effect of compressibility on the
relationship between heat transfer and skin friction for air, a modified
Reynolds analogy, it is found that the ratio of Stanton number to half
the local skin-friction coefficient at M = 0 is from 17.5 percent
to 20.5 percent higher than given by Reynolds analogy in the range of
momentum-thickness Reynolds number from 10% to 106.
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It is also found that up to a Mach number of 5 and under extreme
conditions of surface temperatures, the effects of compressibility on
this ratio are so small as to be of the same order of magnitude as the
possible uncertainties of the theory.

Ames Aeronauticel Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Dec. 8, 1952.
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APPENDIX

SKIN-FRICTION ANALYSIS

In this appendix, the Van Driest analysis will be repeated with the
modifications that Pr # 1 and a # 1.

The basic eqﬁation for determining the veloecity distribution in the
turbulent portion is

o2 (du 2
T = pk&y (gy) (A1)
where the quant.ties represented are temporal mean values.

By algebraic manipulation, equation (Al) is transformed to

K'Jpw 7 (A2)

o

Equation (A2) corresponds to equation (48) of reference 2. Letting
¥ = vw/u,, equation (A2) becomes

ay 1 / d
Joulp R %?V 8

Since the statlc pressure across the boundary layer is considered
constant

o _ T (ak)
p Ty
On integration of equation (12) of the text, the right member of
equation (A4) can be written as
I _p2 (1 4+ BY - 22 32) (A5)
Ty

where
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=1 -ms (1 - E) + %% - IX)
CS
P,
r-1 2 (1 - oy v
l+5maMe [1-(1 m)B]T.,., .
m = ™~ - (46)
T—[l'(l"T)B]
7-1
nz_—___ga'M“’z
v
Ta:
B=2
b2
2
A2=-;E—2

When o = Pr = 1, equations (A5) and (A6) degenerate to those used by
Van Driest. Substitution of equation (A5) into equation (A3) results
in

i T
= v S (a7)
J 1+ BY - A202 U & Py ¥

Except for the term b, equation (A7) is identical with eguation (52)
of Van Driest. Following Van Driest, equation (A7) is integrated to
yield ’

1.:,-1 282U -B 141 B
+=8in + =sin =
A (B2+ ‘4A2)1/2 A (B2 + hAz)l/a
1 Ty b TV y
U P (® + X in Py VW) (48)

where T is a constant.

VWhen equations (Ak), (A5), and (48) are substituted into

a s}
™S f pu (ug - u) dy (A9)
o
there results
U, a o 8gin~?t B
- D A 2 2\1 /2
T = Kgu&_[b 82Je (B2 + ha2)1/ ] (A10)
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where
-IK

D=e D
a = ._Ku—m__-—

b,/ Twle,

20
1 ~ ~ & syt 247U - B .

J = a1 - %) eh (B2 + La2)/2  au (A11)

o (l+Bﬁ'—A‘?‘u~2)3/2

For a flat plate

Ty

= £ _4ase (a12)
Pl oo 2 T &
Therefore, from equation (A1l0)
f’-sin_l B
S;: % [Kpuz %- a2Jeh (B2 + uAa)l/a} (A13)
oo %
or, from equation (A12),
Boin™t 3
0= g Befreh (E+ WA (112)
Peo oo
When Rg dis defined as
U 0.0
Ry = —p— (415)
and
By _ v
(2
equation (A14) becomes
sin
S TR T S
Van Driest has shown that a first approximation to J obtained by
integration by parts results in
1 8 gqp~1_28% - B
857 = (1 + B - A2)1/2 ef (BZ+ ka®)1/2 (A1T)
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Thus Rp can be written
-
b

R _<T_w we 1 exp [ %(sin-lqa +sint ¥)1  (a18)
& "\ T kb (l+B-A2)1/2

where
__2a®-38 ¥ = B

9

For the case of Me= O and Ty/T, = 1, equation (A18) was inte-
grated to yield a relation between the average skin-friction coefficient
and the Reynolds number based on the distance along the plate. Agree-
ment with low-speed experimental results is obtained when F = 6.5.

To determine how much the deviation of Pr and o from unity
influences the local skin-friction coefficient, the results expressed
by equation (A18) are shown in figures 3 and 4. The dashed lines repre-
sent the relationship between c¢/2 and Rg when Pr = 0.72 and r = 0.89
(¢ computed to agree with recovery factor). The solid lines represent
the corresponding relationship for Pr = 1, o = 1 anu, consequently,

r =1l. It is observed that the deviation of Pr and a from unity pro-
duces very little effect on cg/2 at the lower Mach mumbers. At the
higher Mach numbers the effect has same Reynolds mumber dependence;
however, the largest deviation.between the two results is of the order
of T percent. It should be noted that the Van Driest theory is known
to yleld values of gkin-friction coefficlent which are higher than
messured values on the order of 11 percent at M = 2.5 (ref. 15). The
allowed variation of Pr or @ does not improve this situation.
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Figure |.— Modiffed Reynolds analogy for compressible boundary
layer (insulated surface temperature).
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Figure 2.— Modified Reynolds analogy for compressible boundary
layer (wall temperature egqual to free-stream rtemperature).




